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ACTIVITIES (January 1998 to December 1998)

Literature Review

We conducted an extensive literature review in the fields of: a) soil erosion, b) spatially-
explicit ecological and environmental modeling, c) error assessment and budget, d) GIS and remote
sensing-based simulation, f) assessment of error under different temporal and spatial scales, 2)
error and uncertainty in plant community modeling, h) Army LCTA data i) RUSLE and WEPP
models.

Selection of hardware and software packages

We acquired a number of software programs and manuals to assess their adequacy for our
study. These are: S-plus, ArcView, and ArcInfo. Additionally, we purchased other software tools
such as: Visual C++ and GSLib.

We purchased five personal computers to be employed for analysis and reporting.

We obtained membership in the GMS (Geographic Modeling Systems) Laboratory at the
University of Hllinois at Urbana-Champaign, where we have access to software programs such as
GRASS.

We reviewed existing and widely used software packages for GIS, image analysis, and error
and uncertainty assessment. We compared the compatibility, flexibility and cost of various
systems. Finally, we selected ArcView GIS, Geographic Resources Analysis Support System
(GRASS), and Geostatistical Software Library (GSLIB). ArcView was selected mainly because of
its flexibility, wide use, and extensions for basic spatial and image analysis; GRASS to provide
some special spatial analysis methods not found in ArcView; and GSLIB to carry out spatial
variability modeling and simulation, and uncertainty assessment.

Wang participated in a supercomputer workshop at NCSA (National Center for
Supercomputing Applications) at the University of Illinois at Urbana-Champaign.

800 6280666

Meetings and visits to case study site

- We held numerous meetings with members of USACERL (US Army Construction
Engineering Research Laboratories) to: familiarize ourselves with the case study; understand the
needs of the Army; and discuss possible approaches of our analysis. CERL members participating
in those meetings were: Alan Anderson and David Price.

Gertner and Parysow visited the site of the case study, Fort Hood. They had a chance to
“assess the erosion situation at that installation through direct inspection of the land and through

contacts with personnel of this military base, and members of federal and state agencies involved in
this subject. These included: a) at Ft. Hood: Emmet Gray (Chief of the Environmental Office); and
Don Jones (Soil Conservationist); b) at NRCS (Natural Resource Conservation Service): Fredrich
Schrank (Resource Conservationist); Wayne Gabriel (Soil Data Quality Specialist-Database);
James Greenwade (Resource Soil Scientist-Team Leader); and Max Bircket (Geomorphologist); ¢)
at Blackland Research Center (Texas A&M University Research and Extension Center): Dennis
Hoffman (Research Scientist, Water Quality Group); and June Wolfe III (Assistant Research




Scientist, Water Quality Group); d) at The Nature Conservancy of Texas: Laura Sanchez (Senior
Field Botanist). Additionally, Gertner and Parysow helped collect vegetation samples for a project
headed by Terry McClendon and Michael Childress (both form The University of Texas at El
Paso), and David Price (USACERL).

We visited the Natural Resources Conservation Service office in Temple, Texas to discuss
aspects of the soil survey currently employed for calculating the soil erodibility factor “K”.
Additionally, we familiarized ourselves with the proposed work to make compatible the soil
surveys from the two counties Fort Hood is located on.

We collected 576 soil samples at Fort Hood as a part of the effort to assessing and reducing
uncertainty of the soil erodibility factor “K”. Available soil surveys and geostatistical methods will
be employed for that purpose.

Publications

Parysow and Gertner completed and submitted to the journal “Ecological Modelling” a
paper dealing with comparison of ecological scenarios with process models accounting for
uncertainty in model components. The title of this article is “The Role of Interactions in
Hypothesis Testing of Ecological Scenarios with Process Models”. This paper has been accepted
for publication. They in conjunction with Jim Westervelt wrote another paper dealing with
building error budgets for large and computationally-intensive process models. The title of that
article is “Efficient Approximation for Building Error Budgets for Large and Computationally-
Intensive Process Models”. This work was presented in a modeling of complex systems
conference in New Orleans in July, and has also been submitted to “Ecological Modelling”.
SERDP support is acknowledged in both manuscripts.

In addition, below are other papers in preparation where SERDP is acknowledged:

Gertner, G.Z. ; S. Fang and J.P. Skovsgaard 1998. A Bayesian approach for estimating the
parameters of a forest process model based on long-term growth data. Ecological
Modeling (In review).

Gertner, G.Z. and S. Fang 1998. Estimation of a highly nonlinear biological growth model using
Bayesian estimation with rejection sampling. In review The American Statistician
(In review).

Data

We obtained data from numerous sources concerning the case study at Fort Hood. These
dafa include: precipitation, soil, topography, vegetation, impact of military training, and
conservation measures. We are in the process of making these data compatible and usable in our
analyses.




GENERAL FRAMEWORK FOR ERROR AND UNCERTAINTY ASSESSMENT

Objectives
' The main objectives of this project are a) to develop a general methodology for conducting

sensitivity and uncertainty analysis and building error budgets in simulation modeling over space

and time; and b) to apply that methodology to the assessment of soil erosion through the RUSLE

caused by military training at Fort Hood, Texas. This methodology includes:

1) characterizing the source of prediction errors and their spatial and temporal distributions

2) partitioning of errors into various components

3) providing guidelines for error management and error reduction

Methodology and framework

A GIS-based methodology is being developed for making spatial and temporal predictions,
uncertainty analysis, and error budgets. Figure 1 shows the outline of the approach as applied to -
the RUSLE prediction system, whereas Figure 2 emphasizes the flow of data and operations. Thus,
a grid-based database is generated employing field data, as well as auxiliary data from digitized
elevation models, digital soil maps, digitized aerial photos and satellite images. Data calculation
and analysis are carried out to derive values for the input factors, and predictions made for all
sampling plots. Values for non-sampled locations are predicted mainly using geo-statistical
methods.

In addition, the optimal operational scale for the prediction is determined through the
scaling-up method (Atkinson and Curran 1997). Thus, pixel values of the data layers are
aggregated to the optimal operational scale level. Spatial and temporal predictions are made at the
optimal operational scale. Spatial sensitivity of the input parameters on the prediction is analyzed
mainly through Monte Carlo based methods (Figure 3) (Benkobi 1994, Lane & Ferreira 1980,
McKay et al. 1978, Merier et al. 1971, Risse et al. 1993). In addition to Monte Carlo, sensitivity
analysis is carried out using deterministic methods at different area scales. Different sensitivity
analysis approaches and importance measures may be compared in order to find the best one in
terms of cost-efficiency.

Sources errors are assessed in the GIS-based prediction system (Lanter and Veregin 1992,
Lunetta et al. 1991, Walsh et al. 1987). Errors arise mainly from data, material, operations,
modeling, and inherent fuzziness of the real world. In this study, error sources of input parameters
and prediction can be divided as follows: data errors, data process errors, modeling and classifying
errors. Within each group, the error sources are further divided into sub-groups. The error sources,
propagation, and accumulation are described in Figure 4. Figure 5 explains error propagation in
layer-based GIS as proposed by Lanter and Veregin (1992). Error measurement indices are error
measures selected for quality assessment of GIS operators. The error vector of three error indices,
such as spatial error, thematic error, and temporal error can be used for each of data layers in GIS.

Spatial and temporal variability, as well as the local and spatial uncertainty of the input
parameters and predictions of soil loss are mainly derived and assessed using geo-statistical
methods. These methods include ordinary and indicator kriging, sequential Gaussian simulation
and indicator simulation (Deutsch and Journel 1998, Goovaerts 1997). These geo-statistical
methods are compared based on the spatially derived estimates and uncertainty measures such as
error variance maps and probability maps of soil loss exceeding a given tolerance value T. In




addition, the stratification based method (Wang 1996, Wang et al 1997) and multivariate
interpolation by regularized spline with tension (Mitasova and Mitas (1993) are also being tested
for comparison with the geo-statistical methods.

The error propagation and accumulation through all GIS operations are conducted through
Monte Carlo simulations (Emmi and Horton 1995, Openshaw 1989, 1992, Openshaw et al 1991).
The error propagation for data layer scaling up and overlaying are also made by calculating error
variances and co-variances of the data layers, formulating their propagation and deriving the
composite error variance (Cola 1997, Veregin 1989, 1992). The error budget and partitioning into
various sources are then worked out by applying the methods developed by Gertner et al. (1995,
1996), that is, Taylor series based error propagation equations, and combination of Monte Carlo
simulation and orthogonal response surface model. Table 1 displays how the error budget
partitions error by sources. Finally, strategies for error and reduction are being analyzed as well.

As a case study, we are developing a GIS-based methodology to make spatial and temporal
predictions, analyze uncertainty, and build error budgets of soil erosion status based on the RUSLE
applied to military training. In this methodology, we generate a grid-based database containing a
digitized elevation model, and soil, rainfall, and vegetation maps. Spatial and temporal predictions
of soil loss are made at different optimal operational scales. Using sensitivity techniques, spatial
sensitivity of the input parameters on the prediction is analyzed. Various source errors are
configured and assessed. The error modeling for the specific operations (data layer scaling up and
overlay) is made by calculating error variances and covariances of the data layers, formulating their
propagation and deriving the composite map error variance. Based on mean and variability
estimates of environmental conditions, relationships between training intensity and disturbance,
and the uncertainty information obtained, we predict spatial distribution of probabilities of
disturbance that would be caused by the scheduled training intensity. The error budget for the
whole population or a homogeneous sub-area is worked out by applying the Monte Carlo approach
and orthogonal response surface model. In addition, spatial error distribution and patterns are
identified and quantified using geostatistical techniques.

Background - The RUSLE and case study

The Universal Soil Loss Equation (USLE) was developed to empirically predict soil loss
due to erosion caused by water (Aldrich and Slaughter 1983, Kuss and Morgan III 1980, 1986,
Thomas et al. 1967, Weltz et al., Wheeler 1990, Wischmeier 1976, Wischmeier and Smith 1965,
1978). The equation quantifies soil erosion as the product of six factors: rainfall and runoff
erosiveness, soil erodibility, slope length, slope steepness, soil cover, and support conservation
practices. This equation has recently been revised into the Revised Universal Soil Loss Equation
(RUSLE) (Renard et al 1991, 1997). The model system is described by the following equation,
which is widely used for predicting soil erosion:

A=Re*K+LSC-P (1)
Where A = the computed spatial and temporal average soil loss per unit of area; R = rainfall-runoff

erosivity factor; K = soil erodibility factor; LS = the slope length (L) and steepness factor (S); C =
cover factor; and P = support practice factor.




The Army Training and Testing Area Carrying Capacity model (ATTACC) (SERDP
Project CS 1102, Alan Anderson, USACERL) is used by the military to determine training carrying
capacity, and evaluate the impact of alternative training exercises. This model was developed
according to the Evaluation of Land Value Study (ELVS), and is intended to provide operation and
support costs of Land Rehabilitation and Management (LRAM) accounting for environmental,
training, and economic factors (Siegel 1996). Training carrying capacity is determined by the
following relationship between land condition, disturbance caused by military training and natural
recovery:

PREDICTED LAND CURRENT LAND CHANGE INLC DUE CHANGE IN LC DUE TO
= + +
CONDITION (LC) CONDITION TO TRAINING LOAD NATURAL LAND RECOVERY

The Revised Universal Soil Loss Equation (RUSLE) is applied to predict the change inland - -~

condition (characterized as soil loss) caused by training. Spatial and temporal variability of the
input parameters for rainfall, terrain, soil and vegetation results in spatial and temporal variability
of soil loss. Additionally, estimation errors of various sources, as well as model uncertainty will be
propagated through the system into the predicted value. In turn, partitioning of the error in the
predictions according to the error source may be conducted through error budgets. Additionally, it
is very important that decision-makers know not only the sensitivity of the prediction to error in
input parameters, but also how the inherent and operational errors propagate and accumulate
through the system, as well as how the errors vary spatially and temporarily. To that end, a model
is needed for quantifying errors and reporting the resulting uncertainties. In fact, making
predictions without analyzing the associated uncertainty may mislead decision-makers as to the
quality and reliability of those predictions.

We have initiated uncertainty assessment for the rainfall erosivity factor (R) of the RUSLE
model in Fort Hood, Texas. Currently, a single value of the "R" factor is obtained from published
isoerodent maps, which is assumed to be constant for the whole installation. One approach to
assessing the uncertainty of that method would be to compare the values provided by that
isoerodent map with actual values obtained from rainfall recording station in Texas. An alternative
approach to obtaining “R” values, aimed at reducing uncertainty, will be implemented as well.
That approach would consist of spatially extrapolating the values obtained from those recording
stations using geostatistics and assigning uncertainty to the estimated points. For that purpose, we
obtained 15-minute rainfall data from a database collected by the National Climatic Data Center
(NCDC), which is appropriate for soil erosion studies.

We analyzed uncertainty and error propagation in prediction of slope length and steepness
(LS) factors involved in the revised universal soil loss equation (RUSLE) in the case study area
(Fort Hood). We acquired data and material for conductmg this study, including LCTA and DEM

“data.” Statistical analysis were carried out as well. Different prediction equations of LS factors

have been used and compared. The uncertainty and error propagation from models, sampling,
measurement errors and spatial variation of input variables are being studied with two methods: 1)
combination of Kriging interpolation and Taylor series, and 2) Monte Carlo based sequential
Gaussian simulation. In addition, we completed testing of the GIS program GRASS, and the geo-
statistical software package GSLIB.




We began analyzing the soil erodibility factors (K factor) as reported in the NRCS (Natural
Resources Conservation Service) soil surveys, so as to assess their associated uncertainty.
Additionally, we obtained soil sampling data from USACERL for comparison with the information
provided by the NRCS soil surveys.

We began exploring how to incorporate the work conducted by Steve Warren and Heleﬁa
Mitasova (SERDP-funded project) to improve the description of topographic features.

We tested existing RUSLE (Revised Universal Soil Loss Equation) software packages, and
studied the possibility of integrating those programs with an error analysis tool to be developed in
our project.

. - We began studying the structure of the plant community sub-model of FHASM (Fort Hood
Avian Simulation Model) developed by USACERL. We are evaluating the possibility of
employing this model to simulate plant community in conjunction with the RUSLE

We developed a parameter estimation method based on Bayes inference and rejection
sampling for nonlinear models (including uniresponse and multiresponse models); and a random
number generator for highly correlated non-normal distributions.

Results of uncertainty analysis for the LS factor

Preliminary studies for uncertainty and error propagation in prediction of slope length (L)
and steepness (S) factors of the Revised Universal Soil Loss Equation (RUSLE) have been
conducted for our case study area, Fort Hood. We acquired data and material for this study (LCTA
and DEM data), and also conducted statistical analysis. Different prediction equations for the LS
factor were used and compared. The spatial uncertainty and error propagation from models,
sampling, measurement errors and spatial variability of input variables were studied using
combinations of ordinary kriging, indicator kriging, sequential Gaussian and indicator simulation,
and Taylor series based error propagation. These methods were further compared based on
uncertainty measures including error variances of spatial prediction values and probability maps of
prediction values exceeding a given soil loss tolerance threshold.

Table 2 shows descriptive statistics of the LS factor from 219 field plots. Steepness (S) and
slope length (L) were measured in the field at three different locations within each plot, at 0, 50 and
100 m along the 100 m transect line. The mean gradient (SM) and slope length (LM) were
calculated for each plot and the average LS factor value was derived using the set of LS equations
involved in the RUSLE. It was found that slope length had the largest coefficient of variation, but
very low correlation with steepness and LS factor, and also that steepness was highly correlated

~— —— —ith LS factor.- On the other hand, the distributions of all the three variables possessed long and

skew tails towards the right. Comparison of LS factor values from the RUSLE and USLE was is
shown in Figure 6. Employing the USLE led to higher LS factor values than employing the
RUSLE, and this difference increased as LS factor values increased. These differences are
comparable to those found by Moore and Wilson (1992).

The left side of Figure 7 shows the smooth histogram of 219 plot data for steepness and LS
factor. Because the distributions had significant skewness, logarithmic scaling was used to




normalize them. The scatter-plot indicates the high linear correlation between S and LS factors.
The right side of that figure shows the location of sample data for the LS factor, whose values are
represented by different colors.

The spatial variability of the three variables (steepness, slope length, and LS factor) was
studied using semivariograms and standardized indicator semivariograms in three directions:
omnidirection, NE-WS and SE-NW. The semivariogram model parameters of the three variables
are shown in the lower part of Table 3, whereas the standardized LS factor indicator semivariogram
model parameters in the upper part of the same table. The semivariograms were fitted with the
same spherical model, but with different values of the parameters for nugget (Co), sill (C;), and
range (a). The basic model is:

a

¥(hz,)=Cylz )+ C,(zk)Sph(h ) | (2)

ho Y.
Sph(g)= 1.55—0.5(2) if h<a 3

1 otherwise

Where h is the lag, and z is one of the three variables, S, L, and LS factor. The subscript k means
the indicator and thus zy is the cutoff value.

Figure 8 shows the change of standard deviations with increasing number of realizations of
LS factor. From 1 to 30 realizations, the standard deviation decreases quickly, becoming stable
from that point on. Therefore, 30 realizations could be used for LS factor simulation. Figure 9
compares three methods based on their LS factor estimates: ordinary kriging (OK), indicator
kriging (IK), and sequential indicator simulation (SISIM). All the methods share a common
feature: sample data values are honored at their locations. The spatial distributions of the estimates
are also similar in terms of location of the LS factor values. However, outside of the sampling
area, ordinary and indicator kriging produced LS factor values of zero. Also, the two kriging
methods produced smoothed estimate maps, whereas the simulation method did not and, therefore,
spatial variability is more detailed. Furthermore, kriging methods often underestimate the values at
locations where there is high soil loss. Thus, smoothed and underestimating maps may not be
suitable in applications sensitive to the either presence of extreme values or patterns of spatial
variability.

Figure 10 and 11 display uncertainty maps for the estimates in terms of error variance and
probability of LS estimates larger than 1.0. The kriging methods had minimum local error
variance, which is especially clear on the error variance map by ordinary kriging. However,
ordinary kriging creates error variance dependent only on local data configuration and not on actual
data values. Smoothing increases as estimated points are located farther away from the data
locations. On the other hand, the conditional variance created by indicator kriging does not depend




only on the local data configuration, but also on the local actual data values. Thus the LS
conditional variance map by indicator kriging shows improved spatial variability and local
uncertainty. However, the drawback from smoothing was not eliminated in that approach. An
answer to that problem may be found in the sequential indicator simulation method, which
produces a conditional variance map and spatial variability pattern that are closer to reality than
indicator kriging.

Another important feature is that both indicator kriging and sequential indicator simulation
methods gave probability maps for LS factor values larger than a given threshold value, such as
1.0. This feature is very useful for decision-makers that schedule training exercises, since high
probability areas for soil loss exceeding a given tolerance value can be easily found on the
probability maps. Additionally, it should be noted that unlike indicator kriging, the probability
map obtained by the sequential indicator simulation does not depend on the local data
configuration. This simulation method prov1des a visual and quantitative measure (actually a set of
indicator covariance models) of spatial uncertainty. Spatial features, such as specific strings of
large values, are deemed certain if seen on most of the L simulated maps. Conversely, a feature is
deemed uncertain if seen only on a few simulated maps. Also, total cost and probability of wrong
decisions may be derived by combining a loss function and the economic cost of declaring an area
in need of recovery. Finally, although not listed here, results have also been obtained for slope
length (L) and steepness (S).




LAND MANAGEMENT SYSTEM (LMS) AND UNCERTAINTY ASSESSMENT

Spatial-temporal models are widely used for assessment and decision making in natural and
cultural resources. DoD has invested millions of dollars in developing hundreds of models and
simulators to help conserve and maintain its over 25 million acres of land that are essential for
critical readiness training and testing. In 1995 the Defense Science Board emphasized the
importance of using modeling and simulation in natural and cultural resource assessment and
management to achieve cost-effective military training and testing objectives.

The main goal of the LMS is to develop techniques and software programs for simulation
modeling aimed at effectively executing the mission of military land managers and trainers as well
as managers of civil works facilities. These capabilities are expected to support the priorities
estabhshed in both rmhtary and 01v11 works natural resource management

The modehng issues addressed by LMS include: threatened and endangered species (TES)
and biodiversity, land-based carrying capacity for training, land rehabilitation and erosion control,
and establishing an ecosystem approach to the management of training areas. Through models and
simulations, land managers should be able to assess the potential effect of a management action on
the environment. The idea behind this strategy is to maximize mission use while minimizing
impact on ecosystems and available resources.

Specifically, the goal of LMS R&D is to provide the means for efficiently integrating a
broad array of land management modeling tools. This task includes addressing issues such as:
modeling platforms, process-based models, decision support systems and data requirements to the
modeling systems. Ultimately, LMS is expected to achieve its mission by allowing managers to:

1) maximize training/testing flexibility '
2) sustain landscapes for future mission use
3) meet a dramatically increasing number of environmental mandates

The quantification and implications of uncertainty associated with these models and
simulators have not been explicitly considered in a comprehensive manner. Hence, DoD needs to
develop a comprehensive framework for quantifying, analyzing and managing uncertainty of
modeling and simulation results. It is clear that consideration of the errors associated with LMS
modeling tools will greatly improve the effectiveness of this system. In fact, a thorough
assessment of the errors involved in this effort will provide vital information regarding the level of
uncertainty of modeling results. This in turn will inform decision-makers not only about the
reliability of the decisions made according with those results, but also about efficient ways of
improving that reliability. The project on error assessment and management is also contributing to
the LMS coordinated effort among the USACE labs and other DoD units by creating opportunities
to leverage resources for achieving common goals. Likewise, this project is expected to enhance
installation support through the incorporation of these techmques into the integrated Training Area ’
Management (ITAM) Program.
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COORDINATION WITH ORNL

The University of Illinois (UI) will work on the general framework for the assessment of all
sources of modeling errors and uncertainty using the error budget approach. The Ul as a case study
will be working directly with the Natural Resources Assessment and Management Division at
USACERL on the Army Training and Testing Area Carrying Capacity model (ATTACC) (SERDP
Project CS1102) and the Terrain Modeling and Soil Erosion Simulation (SERDP Project CS752-
93) at Fort Hood.

In parallel with the UI work, ORNL (Ecological Modeling and Simulation Using Error and
Uncertainty Analysis Methods (CS1097), Dr. Anthony King) will concentrate on certain types of
spatial uncertainties and stochastic uncertainties as it relates to threatened and endangered animal
(avian) populations. As a case study, ORNL will work on a habitat and spatially structured

" demographic model, Terrestrial Migrant Model (TMM) (SERDP Project CS758). They decided

that they would calibrate the model at Fort Hood for black-capped vireo and golden-cheeked
warbler. They will conduct error and uncertainty assessment based on this model.

There are many types of uncertainties as it relates to such avian populations that are similar
to the uncertainties found in ATTACC, but because of the mobility of such populations, there are
many differences. This is particularly so in terms of certain types of spatial uncertainties and
methods for assessing these uncertainties. Although the UI will explicitly consider spatial
uncertainties in their case study with ATTACC, ORNL work will be an important component in the
overall error budget work. ORNL work will complement the UI work since spatial uncertainty will
be one of the many sources of error the UI will need to consider in the general error budget
framework. Through out the project, the UI will work with ORNL to incorporate their results into
the general error budget approach. Both groups working at Fort Hood will facilitate this process.
Also, to promote the process, the UI group plans to meet three to four times a year with the ORNL
group. We plan to meet next December in Washington at the SERDP Technical Symposium and
Workshop, in March at Fort Hood, in May in Washington at the SERDP Annual Review, and in
September at an unspecified location.
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TABLES

Table 1. A partition of final prediction variances and errors.

Error sources Prediction variances % Prediction errors %

Data errors

Sampling error

Measurement error

Geometric error

Digitized error

Sub-total

Data process errors

Rounding

Transformation

Geometric rectification

Image overlapping

Sub-total

Experimental design error

Sub-total

Model and classification errors

Component 1

Component n

Classification 1

Classification n

Prediction errors

Prediction value error

Spatial error

Human error

Total
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Table 2. Descn'pﬁve statistic of LS factor field measurements (SM, LM, LSM mean the steepness,
slope length and LS mean of three different measuring locations for a field plot).

SM LM LSM SM . LM LSM
Mean 4.742694 38.05175 0.686401 Correlation
Stds 6.534919 27.30394 1.295366 LM -0.06935

Variation %  72.57465 139.3636  52.98896 LSM 0.944361 0.038154
Maximum  62.66667 166.6667  15.8393

Median 3 28.33333 0.379486
Minimum  0.33334 7 0.076243 Covariance
Mode 3 100 0.796208 SM 42.51016
Kurt 3297782 2.929024 87.66725 LM -12.3171  742.1008

Skew 4939896 1.624935 8.180085 LSM 7.957619 1.343298 1.670312

Table 3. Parameters of semivariogram models.

Standardized LS factor indicator semivariogram models

Indicator k LS value Probability ~ Nugget Cy Sill c a
1 0.10 0.1 0.85 1.0 0.15 110
2 0.16 02 0.58 1.0 0.42 30
3 0.21 03 0.87 1.0 0.13 70
4 0.26 0.4 092 1.0 0.08 60
5 0.33 0.5 0.72 1.0 0.28 50
6 0.40 0.6 0.72 1.0 0.28 40
7 0.48 0.7 0.60 1.0 0.40 30
8 0.69 0.8 ' 0.37 1.0 0.63 20
9 2.05 0.95 0.55 1.0 0.45 70

Non-standardized steepness (S), slope length (L)and LS factors semivariogram models
S 8.0 44 35 60
L 100 800 700 40
LS 0.2 2.3 2.1 60
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FIGURES
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Figurel. The general description of the methodology for soil erosion status prediction, uncertainty
analysis and error budget of RUSLE system.
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Case study area in grids, field plots, Elevation, slope Digital elevation
coordinates(x, y), and field data and aspect model (DEM)

77 o (R
\
IR LEEEEE e
S\L Soil texture, organic  Digital soil map
R
K €
L

Soil loss factor
O matter, structure,
o permeability
/ [/ [/ [/ [/

derived

C and Ct-Cu
derived

0 I&( Sensitivity analysis )

v | v

Soil erosion prediction Homogeneous sub-area Error sources
/7 7 7 7 segmentation
(7777 /;;;;
% [/ L)) )]/
l I /—7[—71—7%Z
Lo " [T TT7
Variances of input 10 [ Error budget }< o) |
parameters and
prediction J \/o Prediction with error partition
[ [ [ [/
[ [/ [ [ [
[ [ [ [ [/

Figure 2. Flow of GIS-based prediction, uncertainty analysis and error budget of soil erosion status
(O = operations of image process and statistic, RS = re-sampling, RE = rectification, R&S = remote
sensing).
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input parameters
Geographic variables  Soil properties Cover parameters
Elevation Texture Prior land use
Slope Organic matter Canopy cover
Aspect Structure Surface cover
Permeability Surface roughness
\L \L Soil\Eoisture
LS factors K factor C factor
(. e . ) A .
Sensitivity analysis: Sensitivity analysis:
Monte Carlo based methods Deterministic
sampling procedure: Partial derivative:
Simple random sampling predicting output by
Sensitivity indicator: changing each input
Partial correlation
Variance based importance measure
o J
Input parameters are evaluated and Variation range of prediction is
ranked according to the important determined for variation of
measure selected each input parameter

Figure 3. The sensitivity analysis of input parameters on soil erosion status prediction.
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Field data acquisition errors:
Sampling errors
Sampling technique

Sample size

Measurement errors Data
Instruments
Observers \errors
recording

Non-field data acquisition errorsl
Geometric errors
Sensor system errors
Platform errors
Ground control
Digitization errors
Image attribute errors

Plot locations

Non-image data process

errors:
Rounding
Grouping
Transformation Data
Standardized process
Principal component errors
Logarithm

Quantitative modeling errors:
S_h_iﬂmple (regression) models

‘Complicated(mechanistic)
models

Model and
classificatio

Spatial location errors

Image data process errors:
Radiometric rectificaion
Geometric rectification
Data conversion

Raster to vector
Vector to raster
Scaling up and re-sampling
Image overlay
Image transformation and
enhancement

Error assessment: )
Sampling scheme and sample size

Root mean square errors for quantita-
tive modeling

Error matrix and Kappa-test for qua

litative classificatio

Prediction errors:
Attribute errors
Positional errors

Qualitative classification errors:
Unsupervised classification
Supervised classification

Figure 4. Error sources and propagation of soil erosion status prediction system.
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|
Error Measurement Index (EM!) N
Spatial Thematic Temporal ]
EMIT| EMI2]| .. |[EMI1]EMI2].. |EMI1|EMI2] .. —
Gls funct!om o :
functions function 2 ||
Assumptions
about error propagatior

Figure 5. Conceptual error propagation in layer-based GIS. Each cell in the matrix references a
specific error propagation function designed to propagate a specific error measurement index
(column) through a particular GIS function (row) based on a set of assumptions about error

propagation (plane). (Lanter & Veregin 1992).

LS(RUSLE) - LS(USLE) for mean of
three data sets at different location

LS(USLE)

0 4 8 12 16 20 =24 28 32
LS(RUSLE)

36

Figure 6. Comparison of field plot LS values calculated using RUSLE and USLE systems.

18




Bivariates smoothed histograms and scatp

Locations of Sample Data with LS factors

e M

Figure 7. Smoothed histogram (left) of LS factor and steepness, and scatter plot, and location of

sample data (right).
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Figure 8. Change of standard deviation with increasing number of realizations for LS factor

simulation.
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LS E-type
%

SISIM  Title

LS E-type estimates by

440

Y lab

Figure 9. Comparison of different methods based on estimates.

LS conditional variances by IK  Tit

LS factor error variance by OK  Tit
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Figure 10. Comparison of different methods based on error variances.
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Probability map for LS > 1.0by IK

TR :

map for LS > 1.0 by SISIM
T s R

Y lab

North

Figure 11. Comparison of different methods based on probability maps of LS factor exceeding a
given tolerance threshold value.
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